Least-Squares Linear Smoothers from Randomly Delayed Observations with Correlation in the Delay

نویسندگان

  • Seiichi Nakamori
  • Aurora Hermoso-Carazo
  • Josefa Linares-Pérez
چکیده

This paper discusses the least-squares linear filtering and smoothing (fixed-point and fixed-interval) problems of discrete-time signals from observations, perturbed by additive white noise, which can be randomly delayed by one sampling time. It is assumed that the Bernoulli random variables characterizing delay measurements are correlated in consecutive time instants. The marginal distribution of each of these variables, specified by the probability of a delay in the measurement, as well as their correlation function, are known. Using an innovation approach, the filtering, fixed-point and fixed-interval smoothing recursive algorithms are obtained without requiring the state-space model generating the signal; they use only the covariance functions of the signal and the noise, the delay probabilities and the correlation function of the Bernoulli variables. The algorithms are applied to a particular transmission model with stand-by sensors for the immediate replacement of a failed unit. key words: least-squares estimation, innovation process, filtering and smoothing, randomly delayed observations, covariance information

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation Algorithm from Randomly Delayed Observations with White Plus Coloured Noises

A recursive algorithm for the least-squares linear one-stage prediction and filtering problems of discrete-time signals using randomly delayed measurements perturbed by additive white plus coloured noises are presented. It is assumed that the autocovariance function of the signal and the coloured noise are expressed in a semidegenerate kernel form and the delay is modelled by a sequence of inde...

متن کامل

Least squares order-recursive lattice smoothers - Signal Processing, IEEE Transactions on

AbstructConventional least squares order-recursive lattice (LSORL) filters use present and past data values to estimate the present value of a signal. This paper introduces LSORL smoothers which use past, present and future data for that purpose. Except for an overall delay needed for physical realization, LSORL smoothers can substantially outperform LSORL filters while retaining all the advant...

متن کامل

Application of Recursive Least Squares to Efficient Blunder Detection in Linear Models

In many geodetic applications a large number of observations are being measured to estimate the unknown parameters. The unbiasedness property of the estimated parameters is only ensured if there is no bias (e.g. systematic effect) or falsifying observations, which are also known as outliers. One of the most important steps towards obtaining a coherent analysis for the parameter estimation is th...

متن کامل

New Approach in Fitting Linear Regression Models with the Aim of Improving Accuracy and Power

The main contribution of this work lies in challenging the common practice of inferential statistics in the realm of simple linear regression for attaining a higher degree of accuracy when multiple observations are available, at least, at one level of the regressor variable. We derive sufficient conditions under which one can improve the accuracy of the interval estimations at quite affordable ...

متن کامل

A general smoothing equation for signal estimation using randomly delayed observations in the correlated signal-noise case

This paper treats the least-squares linear smoothing problem for signal estimation using measurements contaminated by additive white noise correlated with the signal, with stochastic delays. We derive a general smoothing equation which is applied to obtain specific smoothing algorithms, which are referred in the signal estimation literature as fixed-point, fixed-interval, and fixed-lag smoothin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 89-A  شماره 

صفحات  -

تاریخ انتشار 2006